Build morphospaces using a variety of multivariate methods, and depict shape variation represented by the resulting ordination axes.

mspace(
  shapes,
  axes = c(1, 2),
  links = NULL,
  template = NULL,
  FUN = stats::prcomp,
  p = NULL,
  k = NULL,
  nh = 5,
  nv = 4,
  mag = 1,
  invax = NULL,
  asp = NA,
  rescale = TRUE,
  xlim = NULL,
  ylim = NULL,
  xlab = NULL,
  ylab = NULL,
  adj_frame = c(1, 1),
  rot.models = 0,
  size.models = 1,
  asp.models = 1,
  col.models = "#708095",
  bg.models = NULL,
  lwd.models = 1,
  alpha.models = 1,
  points = FALSE,
  cex.ldm = 1,
  col.ldm = "black",
  plot = TRUE,
  models = TRUE,
  ...
)

Arguments

shapes

Shape data.

axes

Numeric of length 1 (univariate morphospace) or 2 (bivariate morphospace), indicating the axes to be plotted.

links

A list with the indices of the coordinates defining the wireframe (following the format used in Morpho).

template

Either a 2-column matrix with landmarks/semilandmarks and template curves coordinates (for 2D shape data) or a "mesh3d" object representing the mean shape of the sample (for 3D shape data). See details below.

FUN

The function (method) to be used for ordination of shape variation. Supported alternatives include prcomp, phy_prcomp, bg_prcomp and pls_shapes.

p

Numeric, indicating the number of landmarks/semilandmarks used (only for landmark data in 2-margin matrices format).

k

Numeric, indicating the number of cartesian dimensions of landmarks/semilandmarks (only for landmark data in 2-margin matrices format).

nh

Positive integer; number of shape models along the x axis.

nv

Positive integer; number of shape models along the y axis.

mag

Numeric; magnifying factor for shape models.

invax

Optional integer indicating which of the axes provided in axes needs to be inverted (options are 1, 2 or c(1,2)).

rescale

Logical; whether to re-scale background shape models so shape variation is shown more clearly.

xlim, ylim, xlab, ylab, asp

Standard arguments passed to the generic plot function.

adj_frame

Numeric of length 2, providing a posteriori scaling factors for the width and height of the frame, respectively.

rot.models

Numeric; angle (in degrees) to rotate shape models.

size.models

Numeric; size factor for shape models.

asp.models

Numeric; the y/x aspect ratio of shape models.

col.models

Color for wireframes/outlines.

bg.models

Background color for outlines/meshes.

lwd.models

Integer; width of the lines in wireframes/outlines.

alpha.models

Numeric; transparency factor for background models (3D only).

points

Logical; whether to plot the scatter points.

cex.ldm

Numeric; size of landmarks/semilandmarks in the background models.

col.ldm

Color of landmarks/semilandmarks in the background models.

plot

Logical; whether to plot morphospace.

models

Logical; whether to plot background shape models.

...

Further arguments passed to FUN.

Value

An object of class "mspace", which is a list containing:

  • $ordination: a list with the output from the ordination method used, styled in the prcomp format (typically containing at least an $x, $rotation, and $center slots. Also contains the type of data ($datype) and ordination method ($ordtype) used.

  • $projected: a list containing the elements that have been projected into the morphospace stored in the "mspace" object. Initially includes only the background shape models ($shapemodels), but more elements can be added using the proj_* family of functions.

  • $plotinfo: a list containing the graphical parameters used to create the plot. Passed to plot_mspace to regenerate morphospaces.

Details

This function is the heart of the morphospace workflow. It computes a new ordination space from a sample of normalized shapes using eigenanalysis-based multivariate methods (supported alternatives include PCA, between groups PCA, phylogenetic PCA, two-block PLS); it will also generate a series of shape models depicting the range of variation. The resulting "mspace" object stores all the information necessary to project and/or retrieve new shapes into the ordination space. The output of mspace can be expanded using the proj_* family of functions and the %>% operator from magrittr.

For landmark data, representation of shape variation can be further aided by providing a template, which contains additional geometric features from the structure the landmark/semilandmarks were placed upon. Templates will be warped using TPS interpolation to produce the set of background shape models. For 2D landmark data, templates must be provided as a 2-column matrix containing the actual landmarks/semilandmarks, followed by the coordinates defining a curve or set of curves, separated from the former and from each other by a row of NAs (see build_template2d). For 3D landmark data, the template must be a "mesh3d" object corresponding to the actual mean shape of the sample (which can be obtained using expected_shapes + Morpho::tps3d(); see examples below).

Examples

##2D Landmark data

#load and extract relevant data and information
data("tails")
shapes <- tails$shapes
species <- tails$data$species
links <- tails$links
tree <- tails$tree

#generate morphospace using the basic sample of shapes, PCA as ordination
#method and the links between landmarks provided for backround models
mspace(shapes, links = links, mag = 0.7, axes = c(1,2), points = TRUE)


#increase magnification factor x2:
mspace(shapes, links = links, mag = 1.5, axes = c(1,2), points = TRUE)


#plot PCs 1 and 3
mspace(shapes, links = links, mag = 1.5, axes = c(1,3), points = TRUE)


#generate morphospace using the basic sample of shapes, bgPCA as ordination
#method and links between landmarks for backround models
mspace(shapes, links = links, FUN = bg_prcomp, groups = species, mag = 0.7,
       axes = c(1,2), invax = 1, points = TRUE)


#generate morphospace using species' consensus shapes, phylogenetic PCA as
#ordination method, and links between landmarks for background models
sp_shapes <- expected_shapes(shapes, species)
mspace(sp_shapes, links = links, FUN = phy_prcomp, tree = tree, mag = 0.7,
       axes = c(1,2), points = TRUE)


#just create a morphospace without plotting, save into an object, and inspect
morphosp <- mspace(shapes, links = links, mag = 0.7, axes = c(1,2),
                   plot = FALSE)
morphosp #general info about the object
#> $ordination
#> Standard deviations (1, .., p=18):
#>  [1] 1.426796e-01 6.321339e-02 4.091110e-02 2.872601e-02 1.824931e-02
#>  [6] 4.559347e-03 3.059025e-03 5.031532e-09 1.317611e-09 1.153049e-09
#> [11] 4.623420e-10 3.776080e-10 7.165267e-11 2.933615e-11 1.265950e-16
#> [16] 5.341159e-17 3.393677e-17 2.055923e-17
#> 
#> Rotation (n x k) = (18 x 18):
#>                 PC1           PC2           PC3           PC4           PC5
#>  [1,]  5.329790e-02  8.002048e-02 -1.709637e-01  1.265618e-01  1.406825e-02
#>  [2,] -1.091359e-01 -6.336836e-02 -1.476722e-01 -3.597230e-01  5.881560e-03
#>  [3,]  5.329790e-02  8.002047e-02 -1.709637e-01  1.265618e-01  1.406824e-02
#>  [4,]  1.091359e-01  6.336838e-02  1.476722e-01  3.597230e-01 -5.881565e-03
#>  [5,] -1.594368e-02  4.310034e-02 -2.712629e-01 -1.088825e-01  5.512276e-02
#>  [6,] -1.200565e-01 -6.674838e-02 -1.981826e-01 -4.658059e-01  8.099550e-03
#>  [7,] -1.594367e-02  4.310032e-02 -2.712629e-01 -1.088826e-01  5.512275e-02
#>  [8,]  1.200565e-01  6.674838e-02  1.981826e-01  4.658059e-01 -8.099558e-03
#>  [9,]  4.399310e-01 -2.437591e-01  1.046615e-01 -7.443912e-02 -2.401147e-01
#> [10,]  1.491255e-01 -4.527562e-02 -3.582521e-01  2.091877e-01  4.400596e-01
#> [11,] -1.402353e-01  3.900430e-01  3.237856e-01 -9.539350e-02  2.210315e-01
#> [12,] -8.906164e-02  3.528576e-01 -3.026366e-01  1.450829e-01 -4.375836e-01
#> [13,] -6.740999e-01 -5.388095e-01  2.755919e-02  3.043067e-01 -1.002155e-01
#> [14,]  1.213818e-08 -5.804990e-08  1.742740e-09 -4.185695e-09 -6.954021e-08
#> [15,] -1.402353e-01  3.900430e-01  3.237856e-01 -9.539349e-02  2.210314e-01
#> [16,]  8.906166e-02 -3.528576e-01  3.026367e-01 -1.450830e-01  4.375835e-01
#> [17,]  4.399310e-01 -2.437590e-01  1.046615e-01 -7.443910e-02 -2.401147e-01
#> [18,] -1.491256e-01  4.527570e-02  3.582521e-01 -2.091876e-01 -4.400595e-01
#>                 PC6           PC7           PC8           PC9          PC10
#>  [1,]  3.873318e-01 -2.839641e-01  6.844942e-02 -1.343475e-01  5.317757e-03
#>  [2,]  4.313873e-01  3.710349e-01  8.266175e-03 -2.096390e-01 -7.185979e-02
#>  [3,]  3.873318e-01 -2.839641e-01 -6.844942e-02  1.343475e-01 -5.317734e-03
#>  [4,] -4.313872e-01 -3.710349e-01  8.266271e-03 -2.096391e-01 -7.185976e-02
#>  [5,] -3.788867e-01  2.954505e-01  7.161155e-02 -1.523507e-01 -4.158114e-03
#>  [6,] -1.409452e-01 -4.403843e-01 -3.423388e-02 -1.224052e-01 -7.244692e-02
#>  [7,] -3.788867e-01  2.954504e-01 -7.161158e-02  1.523508e-01  4.158112e-03
#>  [8,]  1.409451e-01  4.403843e-01 -3.423401e-02 -1.224051e-01 -7.244695e-02
#>  [9,] -7.248319e-03  5.735233e-03 -6.846511e-02  4.452142e-01  3.906315e-01
#> [10,]  1.332297e-02 -1.110412e-02  5.147953e-01  2.195411e-01 -5.820761e-03
#> [11,]  5.513743e-03 -7.924600e-03  1.502191e-01  2.157964e-01 -1.812457e-01
#> [12,] -1.038896e-02  8.736658e-03 -2.142650e-01 -1.060949e-01  4.104824e-01
#> [13,] -1.342107e-02 -1.859391e-02  2.759643e-08 -1.286248e-08  1.131728e-08
#> [14,] -3.361147e-08 -1.053959e-07 -5.491251e-01  4.371960e-01 -5.207098e-01
#> [15,]  5.513722e-03 -7.924593e-03 -1.502192e-01 -2.157964e-01  1.812457e-01
#> [16,]  1.038894e-02 -8.736649e-03 -2.142651e-01 -1.060949e-01  4.104824e-01
#> [17,] -7.248325e-03  5.735291e-03  6.846524e-02 -4.452143e-01 -3.906316e-01
#> [18,] -1.332291e-02  1.110418e-02  5.147953e-01  2.195411e-01 -5.820767e-03
#>                PC11          PC12          PC13          PC14         PC15
#>  [1,]  1.730067e-01 -3.233298e-01 -5.188721e-01  2.539011e-01 -0.325553105
#>  [2,] -8.288127e-02 -5.220660e-02  2.995904e-01  3.698919e-01  0.093261498
#>  [3,] -1.730066e-01  3.233298e-01  5.188722e-01 -2.539012e-01 -0.323367909
#>  [4,] -8.288127e-02 -5.220657e-02  2.995904e-01  3.698918e-01 -0.097186118
#>  [5,]  1.942253e-01 -4.656138e-01  2.320760e-01 -3.901983e-01 -0.263614501
#>  [6,] -1.710533e-01  1.970719e-01 -2.928273e-01 -3.823447e-01  0.103666897
#>  [7,] -1.942253e-01  4.656137e-01 -2.320759e-01  3.901983e-01 -0.261207126
#>  [8,] -1.710534e-01  1.970720e-01 -2.928273e-01 -3.823447e-01 -0.106167718
#>  [9,] -1.204181e-01 -1.422919e-01 -9.770668e-03  2.531368e-03  0.241836819
#> [10,] -7.985019e-02 -8.677288e-02 -6.041668e-03  2.232092e-03  0.335682314
#> [11,]  5.228479e-01  2.462699e-01  2.676087e-02 -4.819639e-03  0.227184620
#> [12,]  3.186053e-01  8.566835e-02  1.320289e-02 -6.650989e-04  0.255882941
#> [13,] -8.116942e-09  8.768308e-09 -2.498804e-08  1.590465e-08  0.197833429
#> [14,]  3.035895e-02 -2.875216e-01 -2.784881e-02  2.177175e-02  0.004030102
#> [15,] -5.228479e-01 -2.462700e-01 -2.676093e-02  4.819678e-03  0.232955252
#> [16,]  3.186053e-01  8.566833e-02  1.320294e-02 -6.651340e-04 -0.247082993
#> [17,]  1.204181e-01  1.422919e-01  9.770605e-03 -2.531327e-03  0.249434499
#> [18,] -7.985016e-02 -8.677286e-02 -6.041595e-03  2.232045e-03 -0.326525220
#>             PC16        PC17        PC18
#>  [1,] 0.32604254  0.10397685 -0.02489960
#>  [2,] 0.01402703  0.14239211 -0.44107791
#>  [3,] 0.33341527 -0.06649184  0.05971565
#>  [4,] 0.01263839  0.13989382 -0.44107204
#>  [5,] 0.32611973  0.11346748 -0.02920833
#>  [6,] 0.01649981  0.08697891 -0.41350974
#>  [7,] 0.33424295 -0.07435453  0.06402056
#>  [8,] 0.01496981  0.08422631 -0.41350328
#>  [9,] 0.32106789  0.32259039 -0.12971788
#> [10,] 0.03781676 -0.36480391 -0.18779327
#> [11,] 0.32403672  0.25111802 -0.09434213
#> [12,] 0.03663362 -0.35191557 -0.19470662
#> [13,] 0.33353719  0.02559396  0.01739194
#> [14,] 0.03355199 -0.32635978 -0.20902145
#> [15,] 0.34350776 -0.19908435  0.12912403
#> [16,] 0.03296627 -0.35851347 -0.19469113
#> [17,] 0.34670358 -0.27014835  0.16449882
#> [18,] 0.03298830 -0.37349074 -0.18777287
#> 
#> $projected
#> $projected$shapemodels
#> , , 1
#> 
#>              [,1]          [,2]
#>  [1,]  0.29487356 -5.534341e-02
#>  [2,]  0.29487355  5.534344e-02
#>  [3,]  0.25762935 -6.149401e-02
#>  [4,]  0.25762934  6.149404e-02
#>  [5,] -0.33371019 -3.657116e-01
#>  [6,] -0.25284485 -2.801279e-01
#>  [7,]  0.06810435 -9.088825e-09
#>  [8,] -0.25284489  2.801279e-01
#>  [9,] -0.33371022  3.657116e-01
#> 
#> , , 2
#> 
#>               [,1]          [,2]
#>  [1,]  0.299722574 -6.527253e-02
#>  [2,]  0.299722564  6.527257e-02
#>  [3,]  0.256178807 -7.241669e-02
#>  [4,]  0.256178796  7.241672e-02
#>  [5,] -0.293685498 -3.521442e-01
#>  [6,] -0.265603388 -2.882307e-01
#>  [7,]  0.006775098 -7.984499e-09
#>  [8,] -0.265603418  2.882307e-01
#>  [9,] -0.293685535  3.521442e-01
#> 
#> , , 3
#> 
#>              [,1]          [,2]
#>  [1,]  0.30457159 -7.520166e-02
#>  [2,]  0.30457158  7.520169e-02
#>  [3,]  0.25472826 -8.333936e-02
#>  [4,]  0.25472825  8.333939e-02
#>  [5,] -0.25366081 -3.385769e-01
#>  [6,] -0.27836192 -2.963335e-01
#>  [7,] -0.05455415 -6.880174e-09
#>  [8,] -0.27836195  2.963335e-01
#>  [9,] -0.25366084  3.385768e-01
#> 
#> , , 4
#> 
#>             [,1]          [,2]
#>  [1,]  0.3094206 -8.513079e-02
#>  [2,]  0.3094206  8.513082e-02
#>  [3,]  0.2532777 -9.426204e-02
#>  [4,]  0.2532777  9.426207e-02
#>  [5,] -0.2136361 -3.250095e-01
#>  [6,] -0.2911205 -3.044363e-01
#>  [7,] -0.1158834 -5.775848e-09
#>  [8,] -0.2911205  3.044362e-01
#>  [9,] -0.2136362  3.250095e-01
#> 
#> , , 5
#> 
#>             [,1]          [,2]
#>  [1,]  0.3142696 -9.505991e-02
#>  [2,]  0.3142696  9.505995e-02
#>  [3,]  0.2518272 -1.051847e-01
#>  [4,]  0.2518272  1.051847e-01
#>  [5,] -0.1736114 -3.114421e-01
#>  [6,] -0.3038790 -3.125391e-01
#>  [7,] -0.1772127 -4.671522e-09
#>  [8,] -0.3038790  3.125390e-01
#>  [9,] -0.1736115  3.114421e-01
#> 
#> , , 6
#> 
#>              [,1]          [,2]
#>  [1,]  0.30150830 -6.059747e-02
#>  [2,]  0.30150829  6.059751e-02
#>  [3,]  0.26120294 -6.702833e-02
#>  [4,]  0.26120292  6.702835e-02
#>  [5,] -0.35392101 -3.694655e-01
#>  [6,] -0.22050518 -2.508714e-01
#>  [7,]  0.02342998 -1.390192e-08
#>  [8,] -0.22050521  2.508714e-01
#>  [9,] -0.35392104  3.694655e-01
#> 
#> , , 7
#> 
#>              [,1]          [,2]
#>  [1,]  0.30635732 -7.052660e-02
#>  [2,]  0.30635731  7.052663e-02
#>  [3,]  0.25975239 -7.795100e-02
#>  [4,]  0.25975238  7.795103e-02
#>  [5,] -0.31389632 -3.558982e-01
#>  [6,] -0.23326371 -2.589742e-01
#>  [7,] -0.03789927 -1.279760e-08
#>  [8,] -0.23326375  2.589742e-01
#>  [9,] -0.31389635  3.558981e-01
#> 
#> , , 8
#> 
#>              [,1]          [,2]
#>  [1,]  0.31120633 -8.045573e-02
#>  [2,]  0.31120632  8.045576e-02
#>  [3,]  0.25830184 -8.887368e-02
#>  [4,]  0.25830183  8.887371e-02
#>  [5,] -0.27387163 -3.423308e-01
#>  [6,] -0.24602225 -2.670770e-01
#>  [7,] -0.09922852 -1.169327e-08
#>  [8,] -0.24602228  2.670769e-01
#>  [9,] -0.27387166  3.423308e-01
#> 
#> , , 9
#> 
#>             [,1]          [,2]
#>  [1,]  0.3160553 -9.038485e-02
#>  [2,]  0.3160553  9.038489e-02
#>  [3,]  0.2568513 -9.979636e-02
#>  [4,]  0.2568513  9.979639e-02
#>  [5,] -0.2338469 -3.287634e-01
#>  [6,] -0.2587808 -2.751798e-01
#>  [7,] -0.1605578 -1.058895e-08
#>  [8,] -0.2587808  2.751797e-01
#>  [9,] -0.2338470  3.287634e-01
#> 
#> , , 10
#> 
#>             [,1]          [,2]
#>  [1,]  0.3209044 -1.003140e-01
#>  [2,]  0.3209044  1.003140e-01
#>  [3,]  0.2554007 -1.107190e-01
#>  [4,]  0.2554007  1.107191e-01
#>  [5,] -0.1938222 -3.151961e-01
#>  [6,] -0.2715393 -2.832825e-01
#>  [7,] -0.2218870 -9.484619e-09
#>  [8,] -0.2715393  2.832825e-01
#>  [9,] -0.1938223  3.151960e-01
#> 
#> , , 11
#> 
#>              [,1]          [,2]
#>  [1,]  0.30814305 -6.585154e-02
#>  [2,]  0.30814304  6.585158e-02
#>  [3,]  0.26477652 -7.256264e-02
#>  [4,]  0.26477650  7.256267e-02
#>  [5,] -0.37413183 -3.732195e-01
#>  [6,] -0.18816551 -2.216149e-01
#>  [7,] -0.02124438 -1.871502e-08
#>  [8,] -0.18816554  2.216149e-01
#>  [9,] -0.37413186  3.732195e-01
#> 
#> , , 12
#> 
#>              [,1]          [,2]
#>  [1,]  0.31299207 -7.578067e-02
#>  [2,]  0.31299205  7.578070e-02
#>  [3,]  0.26332597 -8.348532e-02
#>  [4,]  0.26332596  8.348535e-02
#>  [5,] -0.33410714 -3.596521e-01
#>  [6,] -0.20092404 -2.297177e-01
#>  [7,] -0.08257363 -1.761069e-08
#>  [8,] -0.20092407  2.297176e-01
#>  [9,] -0.33410717  3.596521e-01
#> 
#> , , 13
#> 
#>             [,1]          [,2]
#>  [1,]  0.3178411 -8.570979e-02
#>  [2,]  0.3178411  8.570983e-02
#>  [3,]  0.2618754 -9.440799e-02
#>  [4,]  0.2618754  9.440802e-02
#>  [5,] -0.2940824 -3.460847e-01
#>  [6,] -0.2136826 -2.378205e-01
#>  [7,] -0.1439029 -1.650637e-08
#>  [8,] -0.2136826  2.378204e-01
#>  [9,] -0.2940825  3.460847e-01
#> 
#> , , 14
#> 
#>             [,1]          [,2]
#>  [1,]  0.3226901 -9.563892e-02
#>  [2,]  0.3226901  9.563896e-02
#>  [3,]  0.2604249 -1.053307e-01
#>  [4,]  0.2604249  1.053307e-01
#>  [5,] -0.2540578 -3.325174e-01
#>  [6,] -0.2264411 -2.459232e-01
#>  [7,] -0.2052321 -1.540204e-08
#>  [8,] -0.2264411  2.459232e-01
#>  [9,] -0.2540578  3.325174e-01
#> 
#> , , 15
#> 
#>             [,1]          [,2]
#>  [1,]  0.3275391 -1.055680e-01
#>  [2,]  0.3275391  1.055681e-01
#>  [3,]  0.2589743 -1.162533e-01
#>  [4,]  0.2589743  1.162534e-01
#>  [5,] -0.2140331 -3.189500e-01
#>  [6,] -0.2391996 -2.540260e-01
#>  [7,] -0.2665614 -1.429772e-08
#>  [8,] -0.2391997  2.540260e-01
#>  [9,] -0.2140331  3.189500e-01
#> 
#> , , 16
#> 
#>              [,1]          [,2]
#>  [1,]  0.31477780 -7.110561e-02
#>  [2,]  0.31477778  7.110564e-02
#>  [3,]  0.26835010 -7.809696e-02
#>  [4,]  0.26835009  7.809698e-02
#>  [5,] -0.39434265 -3.769734e-01
#>  [6,] -0.15582583 -1.923584e-01
#>  [7,] -0.06591874 -2.352812e-08
#>  [8,] -0.15582587  1.923584e-01
#>  [9,] -0.39434267  3.769734e-01
#> 
#> , , 17
#> 
#>             [,1]          [,2]
#>  [1,]  0.3196268 -8.103473e-02
#>  [2,]  0.3196268  8.103477e-02
#>  [3,]  0.2668996 -8.901963e-02
#>  [4,]  0.2668995  8.901966e-02
#>  [5,] -0.3543180 -3.634060e-01
#>  [6,] -0.1685844 -2.004612e-01
#>  [7,] -0.1272480 -2.242379e-08
#>  [8,] -0.1685844  2.004611e-01
#>  [9,] -0.3543180  3.634060e-01
#> 
#> , , 18
#> 
#>             [,1]          [,2]
#>  [1,]  0.3244758 -9.096386e-02
#>  [2,]  0.3244758  9.096390e-02
#>  [3,]  0.2654490 -9.994231e-02
#>  [4,]  0.2654490  9.994234e-02
#>  [5,] -0.3142933 -3.498387e-01
#>  [6,] -0.1813429 -2.085640e-01
#>  [7,] -0.1885772 -2.131946e-08
#>  [8,] -0.1813429  2.085639e-01
#>  [9,] -0.3142933  3.498387e-01
#> 
#> , , 19
#> 
#>             [,1]          [,2]
#>  [1,]  0.3293248 -1.008930e-01
#>  [2,]  0.3293248  1.008930e-01
#>  [3,]  0.2639985 -1.108650e-01
#>  [4,]  0.2639984  1.108650e-01
#>  [5,] -0.2742686 -3.362713e-01
#>  [6,] -0.1941014 -2.166667e-01
#>  [7,] -0.2499065 -2.021514e-08
#>  [8,] -0.1941015  2.166667e-01
#>  [9,] -0.2742686  3.362713e-01
#> 
#> , , 20
#> 
#>             [,1]          [,2]
#>  [1,]  0.3341739 -1.108221e-01
#>  [2,]  0.3341738  1.108222e-01
#>  [3,]  0.2625479 -1.217877e-01
#>  [4,]  0.2625479  1.217877e-01
#>  [5,] -0.2342439 -3.227040e-01
#>  [6,] -0.2068600 -2.247695e-01
#>  [7,] -0.3112357 -1.911081e-08
#>  [8,] -0.2068600  2.247695e-01
#>  [9,] -0.2342439  3.227039e-01
#> 
#> 
#> 
#> $plotinfo
#> $plotinfo$p
#> [1] 9
#> 
#> $plotinfo$k
#> [1] 2
#> 
#> $plotinfo$links
#> $plotinfo$links[[1]]
#> [1] 1 3 5 6 7 8 9 4 2
#> 
#> 
#> $plotinfo$template
#> NULL
#> 
#> $plotinfo$axes
#> [1] 1 2
#> 
#> $plotinfo$nh
#> [1] 5
#> 
#> $plotinfo$nv
#> [1] 4
#> 
#> $plotinfo$mag
#> [1] 0.7
#> 
#> $plotinfo$xlim
#> NULL
#> 
#> $plotinfo$ylim
#> NULL
#> 
#> $plotinfo$asp
#> [1] NA
#> 
#> $plotinfo$rescale
#> [1] TRUE
#> 
#> $plotinfo$adj_frame
#> [1] 1 1
#> 
#> $plotinfo$asp.models
#> [1] 1
#> 
#> $plotinfo$rot.models
#> [1] 0
#> 
#> $plotinfo$size.models
#> [1] 1
#> 
#> $plotinfo$lwd.models
#> [1] 1
#> 
#> $plotinfo$bg.models
#> NULL
#> 
#> $plotinfo$col.models
#> [1] "#708095"
#> 
#> $plotinfo$alpha.models
#> [1] 1
#> 
#> $plotinfo$cex.ldm
#> [1] 1
#> 
#> $plotinfo$col.ldm
#> [1] "black"
#> 
#> $plotinfo$models
#> [1] TRUE
#> 
#> $plotinfo$rotation_matrix
#> NULL
#> 
#> 
#> attr(,"class")
#> [1] "mspace"
names(morphosp) #slots
#> [1] "ordination" "projected"  "plotinfo"  


#load wing data for a quick demo with templates
data("wings")
shapes <- wings$shapes
links <- wings$links
template <- wings$template

#generate morphospace using links
mspace(shapes, links = links, mag = 3, axes = c(1,2), points = TRUE)
#> Error in shapes_mat(shapes): object 'data2d' not found

#generate morphospace using template
mspace(shapes, template = template, mag = 3, axes = c(1,2), points = TRUE)
#> Error in shapes_mat(shapes): object 'data2d' not found



##3D Landmark data

if (FALSE) {
#load data and packages and extract relevant data and information
library(Morpho)
library(geomorph)
data("shells3D")
shapes <- shells3D$shapes
mesh_meanspec <- shells3D$mesh_meanspec

#generate morphospace. This is interactive, you need to rotate the shape by
#yourself and then press enter into the console.
mspace(shapes, mag = 1, axes = c(1,2), col.ldm = "black", cex.ldm = 2,
       points = TRUE)

#generate morphospace using a mesh template that improves visualization:
#first, get shape corresponding to shells3D$mesh_meanspec using
#geomorph::findMeanSpec
meanspec_id <- findMeanSpec(shapes)
meanspec_shape <- shapes[,,meanspec_id]

#then get the consensus shape and warp the sample mesh to get the mesh
#corresponding to the consensus using Morpho::tps3d
meanshape <- expected_shapes(shapes)
meanmesh <- tps3d(x = mesh_meanspec , refmat = meanspec_shape,
                  tarmat = meanshape)

#finally, generate morphospace providing template (this function used the
#mesh warped to the mean shape of the entire sample, hence the previous
#lines)
morphosp_3d <- mspace(shapes, mag = 1, axes = c(1,2), template = meanmesh,
                      bg.models = "gray", nh = 4, nv = 4, cex.ldm = 0,
                      points = TRUE)

#inspect the contents of the object
morphosp_3d
}


##Outline data

#load and extract relevant data and information
data("shells")
shapes <- shells$shapes$coe

#generate morphospace using all the raw variation
mspace(shapes, mag = 1, axes = c(1,2), nh = 5, nv = 4, size.models = 1,
       rescale = FALSE, asp.models = 1, bg.model = "light gray")


#shapes in the background can be rescaled to avhieve a (slightly) better
#visualization. Also, save the ordination into an object.
morphosp_F <- mspace(shapes, mag = 1, axes = c(1,2), nh = 5, nv = 4,
                     size.models = 1, asp.models = 1,
                     bg.model = "light gray")


#inspect the contents of the object
morphosp_F
#> $ordination
#> Standard deviations (1, .., p=28):
#>  [1] 6.630556e-02 1.568822e-02 1.215250e-02 7.867647e-03 5.781898e-03
#>  [6] 4.838864e-03 3.833776e-03 2.799163e-03 2.464360e-03 2.276466e-03
#> [11] 1.835531e-03 1.660593e-03 1.437697e-03 1.307675e-03 1.189539e-03
#> [16] 1.096859e-03 9.622907e-04 9.226957e-04 8.089497e-04 6.210718e-04
#> [21] 5.645506e-04 5.086423e-04 4.254094e-04 3.988798e-04 3.712252e-04
#> [26] 1.462905e-16 6.380812e-18 6.380812e-18
#> 
#> Rotation (n x k) = (28 x 28):
#>              PC1           PC2           PC3           PC4           PC5
#> A1 -4.145867e-16 -1.191235e-15  9.759333e-17 -3.797246e-15  1.809422e-15
#> A2  4.967593e-02  2.694393e-01 -4.307776e-02  1.206682e-01  2.920123e-01
#> A3 -1.233233e-01  6.942753e-02  1.925656e-01 -2.499869e-01  3.808477e-02
#> A4  2.307683e-02  1.945512e-01  3.955441e-02  1.840008e-01  4.964924e-02
#> A5 -3.872792e-02  2.454062e-02  1.274860e-01 -1.606762e-01  1.183256e-01
#> A6 -7.667248e-03  1.922569e-02  5.116191e-02  1.212619e-01 -1.984051e-02
#> A7 -1.945484e-02 -6.183420e-03  2.117076e-02  3.813111e-02  1.069016e-01
#> B1  0.000000e+00  0.000000e+00  0.000000e+00 -6.938894e-18 -1.110223e-16
#> B2  3.554575e-02  6.172861e-02 -3.195165e-01 -1.462292e-01  2.950328e-01
#> B3 -2.126920e-02 -4.329129e-02 -4.322680e-03  3.890679e-02 -3.274894e-01
#> B4  3.615945e-02  5.969358e-02 -2.672780e-01 -1.876653e-02  2.742349e-02
#> B5 -3.841112e-03  5.080481e-03  3.965784e-02 -6.294367e-02 -3.059885e-01
#> B6  1.569429e-02  4.457797e-02 -1.185847e-01  7.269871e-02 -8.589280e-02
#> B7  9.926818e-03  2.595143e-02  1.777325e-02 -6.881232e-02 -1.366775e-01
#> C1  0.000000e+00  0.000000e+00 -3.786532e-29 -2.584939e-26 -2.646978e-23
#> C2 -2.287316e-02 -1.418314e-01  7.134584e-01  4.019630e-01  1.726615e-01
#> C3  1.981945e-02 -6.678444e-02  3.557905e-02  6.077091e-02  6.288789e-01
#> C4 -4.323135e-03 -8.031176e-02 -6.456261e-02 -2.534568e-01  2.567122e-01
#> C5 -1.070913e-02 -7.573176e-02 -4.987594e-02  1.549285e-01 -4.496193e-02
#> C6  1.605667e-02 -1.441231e-02 -1.207840e-01 -2.083253e-02  1.129421e-01
#> C7  3.871858e-03 -2.982786e-02 -1.247524e-02 -6.056039e-02 -1.069186e-01
#> D1 -9.789602e-01  9.506505e-02 -2.991922e-02 -1.240679e-02  3.609252e-02
#> D2  5.872731e-02  8.420255e-01  4.275123e-02  2.310457e-01 -7.132373e-02
#> D3  1.067527e-01  2.123677e-01  4.304113e-01 -5.817454e-01  8.896310e-03
#> D4 -3.164236e-02 -2.150858e-01  9.061582e-02  1.556738e-01 -1.604395e-01
#> D5  2.829798e-02 -1.003312e-01 -1.349586e-01  3.056239e-01  1.252519e-01
#> D6 -3.034388e-03 -1.069726e-01  2.673224e-02 -1.375360e-01  5.227142e-02
#> D7  1.138204e-02 -5.489064e-02 -6.226012e-02  1.541128e-01 -4.708304e-02
#>              PC6           PC7           PC8           PC9          PC10
#> A1 -2.780008e-15  2.993438e-15 -5.752998e-15  2.161461e-15 -2.455056e-15
#> A2  1.013843e-01 -6.456342e-02 -2.316411e-01 -1.561421e-01 -1.165065e-02
#> A3  3.106781e-02 -1.849404e-01 -5.718159e-02 -1.581259e-01  7.359405e-02
#> A4 -1.030835e-01 -2.972308e-01  2.896924e-03  7.738609e-02 -1.203209e-02
#> A5 -9.908202e-02 -2.773935e-02 -3.514089e-01 -7.836970e-02 -3.563651e-02
#> A6  4.227112e-02 -3.230348e-01 -1.339148e-01  1.937922e-01  6.227356e-02
#> A7 -1.864407e-01 -5.140715e-02 -3.621102e-01 -9.643957e-02 -6.583327e-02
#> B1 -8.326673e-17  1.665335e-16  1.110223e-16  4.163336e-16  6.591949e-16
#> B2  5.075439e-02  1.443643e-01  7.138144e-02  4.540165e-01 -5.237024e-01
#> B3  1.450441e-01 -1.292530e-01 -1.256444e-02 -4.173355e-02 -1.959371e-01
#> B4 -3.104690e-01  1.853690e-01 -4.343516e-02  6.778478e-02 -2.582614e-01
#> B5  1.924746e-01  9.372113e-02 -1.226202e-01  1.983177e-01  8.105937e-02
#> B6 -3.246718e-01  1.363179e-01  1.333348e-01  5.694759e-02 -3.726453e-02
#> B7  7.847210e-02  1.995397e-01 -9.952343e-02  2.587674e-01  1.456932e-01
#> C1 -1.694066e-21 -5.421011e-20 -3.469447e-18 -5.551115e-17  0.000000e+00
#> C2  1.331164e-01  3.167495e-01  5.399447e-02  1.188869e-01 -3.339325e-01
#> C3 -1.498743e-01 -1.197196e-01  2.666627e-01  6.261250e-02  3.915079e-01
#> C4  5.323909e-01 -3.349549e-01  6.171582e-02  1.315641e-01 -1.964546e-01
#> C5 -4.329519e-02 -3.389040e-01  7.257201e-02 -4.886240e-01 -4.792306e-01
#> C6 -6.215177e-02  1.148534e-01 -2.938718e-01 -8.281409e-02 -2.630238e-02
#> C7  1.599750e-01 -2.720376e-02 -7.561588e-02  2.762308e-02  8.267170e-02
#> D1 -4.626522e-02  3.761851e-02 -1.826942e-03  3.978805e-02 -2.780241e-02
#> D2  1.347824e-01 -6.131090e-02  1.764722e-02  1.088604e-01  1.096183e-02
#> D3 -3.692986e-01 -7.247460e-02 -8.933700e-02  5.754474e-02 -1.732526e-01
#> D4 -2.818844e-01 -4.946173e-01 -8.240244e-02  5.158041e-01 -1.100814e-02
#> D5 -2.190711e-02  3.832099e-02 -5.661963e-01  5.377325e-02  1.578862e-02
#> D6  2.298868e-01  2.744182e-02 -3.178936e-01  4.167844e-02  6.240215e-02
#> D7 -1.368140e-01 -1.161372e-01  9.360319e-02  2.151035e-02 -2.312622e-02
#>             PC11          PC12          PC13          PC14          PC15
#> A1 -4.345987e-15  4.265594e-15  1.226918e-14  2.380328e-14 -4.591606e-15
#> A2 -1.839682e-01 -2.740361e-01  7.323514e-01 -1.295474e-01  1.416244e-01
#> A3  2.480443e-01 -1.528192e-01 -1.810449e-01  2.487820e-01  6.507206e-01
#> A4  6.062471e-02 -9.726789e-02 -5.107899e-02 -1.433534e-01 -1.319825e-01
#> A5  4.279499e-02  1.749171e-01 -9.759593e-02 -8.166315e-02  1.537391e-01
#> A6  2.147828e-01 -1.496628e-01  7.551697e-02  1.981710e-01 -9.285114e-02
#> A7 -4.615518e-02  2.631367e-01 -8.476765e-02 -1.935930e-02 -6.591464e-02
#> B1  4.570996e-16  2.428613e-16  4.718448e-16 -8.326673e-17  1.457168e-16
#> B2  2.683042e-01 -3.918806e-02  6.282717e-02 -4.924132e-02  2.090568e-01
#> B3  3.058551e-01  4.404485e-01  1.895473e-01 -4.412080e-01  6.598064e-02
#> B4  6.267032e-03 -1.816977e-02 -1.009169e-01  2.184067e-01 -8.057212e-02
#> B5  1.445395e-01  3.517963e-02  9.174709e-02 -1.863378e-01  1.023943e-01
#> B6 -3.429344e-04  1.220706e-01  2.101522e-01  2.134044e-01 -3.377876e-02
#> B7 -1.068919e-01  9.840762e-02  6.672664e-02 -1.876669e-01  1.983282e-01
#> C1  0.000000e+00 -1.110223e-16  0.000000e+00  5.551115e-17 -2.775558e-17
#> C2  4.180670e-02 -5.906628e-02 -3.078678e-02  3.151490e-02 -1.824770e-02
#> C3  2.993656e-01  2.835657e-01  5.231419e-03 -2.151536e-01 -3.858997e-02
#> C4 -3.729190e-01  1.567638e-01 -1.686247e-01  3.319544e-02 -1.501370e-01
#> C5  1.124663e-01  4.739139e-05 -5.212835e-03 -2.328240e-03 -1.188509e-02
#> C6  2.233585e-01 -4.702286e-01 -3.535133e-01 -4.634911e-01 -1.216107e-01
#> C7  2.616570e-01 -1.689921e-01  5.927968e-02  1.792277e-02 -4.781461e-01
#> D1 -3.250853e-02  1.698652e-02  5.375188e-02 -3.423480e-02 -1.118427e-01
#> D2  6.752760e-02  1.299809e-01 -2.565887e-01  8.555361e-02 -3.893914e-02
#> D3 -6.880644e-02  1.005484e-01  1.336757e-01 -8.086151e-02 -2.504271e-01
#> D4 -1.372106e-01 -1.972610e-01  9.987079e-03 -3.323282e-02  1.017327e-01
#> D5 -1.789824e-01  3.026395e-01 -1.183682e-01  8.455230e-02  4.050802e-02
#> D6  4.189673e-01  5.389308e-02  1.820392e-01  4.441410e-01 -1.970536e-01
#> D7  2.340624e-01  1.712395e-01  8.366953e-02  1.005234e-01  3.869938e-02
#>             PC16          PC17          PC18          PC19          PC20
#> A1 -1.899912e-14 -2.172890e-14 -1.279034e-14  1.869127e-14  2.111276e-14
#> A2  1.220080e-01 -3.919735e-02 -2.004076e-02  1.496203e-01 -8.319480e-02
#> A3  9.697858e-02  4.839994e-02  2.108472e-01  3.016087e-01  1.521580e-01
#> A4  2.220384e-01  6.205459e-01  1.345737e-01 -2.286415e-01  4.501114e-01
#> A5  1.085692e-01  1.577262e-01  1.079186e-01 -4.037594e-01 -5.088537e-01
#> A6 -1.364826e-01  1.329546e-01 -1.737396e-02 -3.866638e-02 -9.311926e-02
#> A7  3.198557e-01 -1.214974e-01  1.185982e-01 -4.506417e-02  3.973741e-03
#> B1  7.771561e-16  8.881784e-16 -4.163336e-17  2.359224e-16  5.273559e-16
#> B2 -1.234765e-01 -9.988887e-02  2.129346e-01 -2.466335e-01  5.840385e-02
#> B3 -2.004968e-02  2.453833e-01 -4.411826e-02  2.373243e-01 -1.791235e-01
#> B4  2.009025e-01  3.210507e-01 -1.499769e-01  5.457057e-01 -2.493863e-01
#> B5  2.723467e-03 -1.079123e-01  1.146846e-01  2.126487e-01  2.119157e-01
#> B6  1.239935e-03  8.241446e-02  9.348519e-02  7.359411e-02  1.888746e-01
#> B7  8.722382e-02  1.756774e-02 -2.881041e-01 -8.297122e-02  2.091528e-01
#> C1 -1.283695e-16  0.000000e+00  1.942890e-16 -1.665335e-16 -4.434387e-17
#> C2  9.083409e-02  3.731629e-02  5.144613e-03  1.016154e-01 -1.994954e-02
#> C3 -1.505140e-01 -4.361398e-02 -4.522317e-02  2.108559e-01 -2.565979e-02
#> C4  2.421004e-01  2.884487e-02 -8.453252e-02  1.984662e-01  5.783163e-02
#> C5 -2.740025e-01 -1.847214e-01 -1.250668e-01 -3.208892e-02  1.468671e-01
#> C6  7.673304e-02 -1.075560e-01 -2.787114e-01  1.122107e-01  9.844437e-02
#> C7  1.156927e-01 -1.646125e-01  5.852090e-01  1.468249e-01 -1.194458e-01
#> D1 -2.495586e-02 -2.474009e-02 -3.258483e-02  3.228117e-03  4.047779e-02
#> D2 -8.373482e-02 -2.004358e-01 -1.111514e-01  3.956626e-02 -1.337999e-01
#> D3 -1.309884e-01 -1.326131e-01 -3.947777e-02  8.494160e-02  2.114128e-01
#> D4 -7.769777e-02 -1.661485e-01 -1.156438e-01  9.061928e-02 -2.156912e-01
#> D5 -2.890901e-01 -8.968267e-02  2.067380e-01  1.647016e-01  2.999113e-01
#> D6 -7.881871e-02  1.041951e-01 -4.499378e-01 -9.988014e-02  7.573533e-02
#> D7  6.523618e-01 -4.241764e-01 -1.334154e-01 -1.090747e-01  1.460125e-01
#>             PC21          PC22          PC23          PC24          PC25
#> A1  3.589307e-14  2.134660e-14  1.358987e-14  9.489055e-15  6.200933e-16
#> A2 -2.021038e-02  1.067759e-02 -2.459882e-02 -9.576470e-03 -3.400885e-02
#> A3  8.093032e-04  9.878765e-02  2.723979e-02  1.520095e-01 -5.629338e-02
#> A4 -1.222887e-01 -6.456904e-02 -1.803580e-01 -1.674861e-02 -7.485673e-02
#> A5 -3.623120e-01 -4.456572e-02  2.163693e-01 -2.528102e-01 -1.176181e-01
#> A6  3.960497e-01 -2.499741e-01  5.589883e-01 -7.182355e-02  3.323899e-01
#> A7  2.083744e-01  2.708370e-01 -2.378943e-01  1.706790e-01  6.205938e-01
#> B1  1.276756e-15  8.257284e-16  1.009609e-15  4.440892e-16 -3.285133e-17
#> B2  8.109239e-02  2.998456e-03 -7.625143e-02  6.112366e-02  3.099982e-02
#> B3  2.348836e-01  1.536254e-01  2.591228e-02  1.525109e-01 -1.862709e-01
#> B4 -1.364917e-01 -3.177995e-01 -5.558180e-02 -1.494494e-03  7.261212e-02
#> B5 -2.323056e-01 -1.379008e-01 -1.393172e-01 -6.336926e-01  3.307347e-01
#> B6 -1.981196e-01  6.267864e-01  4.504958e-01 -1.648848e-01  4.534145e-03
#> B7 -3.677183e-01 -1.801246e-01  3.015925e-01  5.327998e-01  2.174164e-01
#> C1  2.220446e-16 -2.220446e-16 -1.387779e-16  3.885781e-16  1.474515e-17
#> C2 -2.947744e-02  3.409219e-02  4.885271e-02 -1.579803e-03  4.063635e-03
#> C3 -1.635945e-01 -4.487405e-02 -6.806549e-03 -2.586287e-02  1.026995e-01
#> C4 -7.800595e-02  1.517813e-01  1.929118e-01 -1.105679e-01 -1.634218e-02
#> C5 -3.852870e-01 -1.319400e-01  6.801292e-02  4.349167e-02  2.063755e-01
#> C6  6.848160e-02  2.393497e-01  1.998180e-01 -7.817000e-02 -9.883161e-02
#> C7 -2.926376e-01 -1.857163e-02  6.134254e-02  3.194948e-01 -6.413516e-02
#> D1  7.856010e-03 -4.084181e-02  2.398739e-03 -1.176107e-02 -2.445514e-02
#> D2 -7.282009e-02  9.953296e-02 -3.947124e-02  2.042193e-02 -2.680007e-02
#> D3  1.121186e-01 -1.335174e-01  3.920642e-02 -5.491905e-03 -1.210632e-01
#> D4 -1.783284e-01  1.884614e-01 -2.192730e-01  6.257769e-02 -8.439287e-02
#> D5  4.155993e-02 -1.546762e-01  7.917485e-02  5.506550e-03 -3.261137e-01
#> D6 -1.214536e-01  1.811315e-01 -2.612937e-01  2.006370e-02 -8.226184e-02
#> D7  7.467957e-02 -2.372662e-01  1.169165e-01 -1.038317e-01 -2.819511e-01
#>             PC26          PC27          PC28
#> A1 -1.000000e+00  0.000000e+00  0.000000e+00
#> A2  4.041422e-15 -1.911317e-16 -1.160108e-17
#> A3  6.329229e-15 -5.037665e-16  9.877094e-17
#> A4 -2.799879e-14 -4.862059e-16  1.683027e-16
#> A5 -3.897897e-14  5.031204e-16 -2.541313e-16
#> A6  1.717703e-14 -9.005673e-16 -1.074300e-16
#> A7  8.911591e-15 -1.840397e-16  1.757058e-16
#> B1  6.310887e-29  9.873986e-01 -1.582529e-01
#> B2  1.376453e-15  1.505949e-16  6.298184e-17
#> B3  7.239098e-16 -9.699889e-16  1.180546e-16
#> B4 -9.664659e-15  2.625137e-16 -1.736182e-16
#> B5 -1.360095e-14  5.847481e-16 -3.086612e-16
#> B6  2.177313e-14 -1.059694e-15  4.691522e-17
#> B7 -5.784090e-15 -3.825875e-16  1.721837e-16
#> C1  1.577722e-30 -1.582529e-01 -9.873986e-01
#> C2 -4.021627e-16  1.536397e-17 -2.284210e-17
#> C3 -5.610058e-15  9.206869e-18 -1.361220e-17
#> C4  3.934823e-15 -1.557405e-16 -5.108743e-17
#> C5 -4.184904e-15  1.341629e-15 -1.512347e-16
#> C6  2.686532e-15 -2.827997e-16 -2.323644e-17
#> C7 -1.163206e-14  2.502670e-16  1.763991e-16
#> D1  3.039375e-15  3.917758e-17 -6.936966e-19
#> D2  1.281274e-15  3.984417e-16 -3.277438e-17
#> D3  1.894247e-14  2.776728e-17  2.230525e-17
#> D4 -2.175669e-15  4.100776e-16 -2.237382e-18
#> D5  1.843752e-14  4.839094e-17  2.096714e-17
#> D6  1.489228e-14  3.957950e-17  7.453091e-17
#> D7 -4.460525e-16 -3.568529e-16  4.993092e-17
#> 
#> $projected
#> $projected$shapemodels
#>       A1           A2         A3            A4          A5            A6
#>  [1,]  1 -0.006342011 0.08671459 -4.929756e-03 0.021738378 -2.220405e-04
#>  [2,]  1 -0.002232144 0.07651161 -3.020527e-03 0.018534278 -8.563793e-04
#>  [3,]  1  0.001877723 0.06630864 -1.111298e-03 0.015330179 -1.490718e-03
#>  [4,]  1  0.005987590 0.05610566  7.979310e-04 0.012126080 -2.125057e-03
#>  [5,]  1  0.010097457 0.04590268  2.707160e-03 0.008921980 -2.759396e-03
#>  [6,]  1  0.000504780 0.08847883  1.403505e-05 0.022361986  2.665084e-04
#>  [7,]  1  0.004614647 0.07827585  1.923264e-03 0.019157886 -3.678304e-04
#>  [8,]  1  0.008724514 0.06807288  3.832493e-03 0.015953787 -1.002169e-03
#>  [9,]  1  0.012834381 0.05786990  5.741722e-03 0.012749687 -1.636508e-03
#> [10,]  1  0.016944248 0.04766693  7.650951e-03 0.009545588 -2.270847e-03
#> [11,]  1  0.007351571 0.09024307  4.957826e-03 0.022985593  7.550574e-04
#> [12,]  1  0.011461438 0.08004009  6.867055e-03 0.019781494  1.207186e-04
#> [13,]  1  0.015571305 0.06983712  8.776284e-03 0.016577395 -5.136202e-04
#> [14,]  1  0.019681172 0.05963414  1.068551e-02 0.013373295 -1.147959e-03
#> [15,]  1  0.023791039 0.04943117  1.259474e-02 0.010169196 -1.782298e-03
#> [16,]  1  0.014198362 0.09200731  9.901616e-03 0.023609201  1.243606e-03
#> [17,]  1  0.018308229 0.08180433  1.181085e-02 0.020405102  6.092675e-04
#> [18,]  1  0.022418096 0.07160136  1.372007e-02 0.017201003 -2.507122e-05
#> [19,]  1  0.026527963 0.06139838  1.562930e-02 0.013996903 -6.594100e-04
#> [20,]  1  0.030637830 0.05119541  1.753853e-02 0.010792804 -1.293749e-03
#>                A7 B1            B2            B3          B4           B5
#>  [1,] 0.009080876  0 -0.0003739261  2.883557e-03 0.001042821 0.0019842750
#>  [2,] 0.007471308  0  0.0025669005  1.123880e-03 0.004034421 0.0016664862
#>  [3,] 0.005861740  0  0.0055077271 -6.357975e-04 0.007026022 0.0013486973
#>  [4,] 0.004252172  0  0.0084485537 -2.395475e-03 0.010017622 0.0010309084
#>  [5,] 0.002642604  0  0.0113893803 -4.155152e-03 0.013009223 0.0007131195
#>  [6,] 0.008923748  0  0.0011946756  1.783471e-03 0.002559709 0.0021133765
#>  [7,] 0.007314180  0  0.0041355022  2.379354e-05 0.005551310 0.0017955876
#>  [8,] 0.005704612  0  0.0070763288 -1.735884e-03 0.008542911 0.0014777987
#>  [9,] 0.004095044  0  0.0100171554 -3.495561e-03 0.011534511 0.0011600098
#> [10,] 0.002485476  0  0.0129579820 -5.255238e-03 0.014526112 0.0008422210
#> [11,] 0.008766619  0  0.0027632773  6.833846e-04 0.004076598 0.0022424779
#> [12,] 0.007157051  0  0.0057041039 -1.076293e-03 0.007068199 0.0019246890
#> [13,] 0.005547483  0  0.0086449305 -2.835970e-03 0.010059800 0.0016069001
#> [14,] 0.003937915  0  0.0115857571 -4.595647e-03 0.013051400 0.0012891113
#> [15,] 0.002328347  0  0.0145265837 -6.355324e-03 0.016043001 0.0009713224
#> [16,] 0.008609491  0  0.0043318790 -4.167016e-04 0.005593487 0.0023715793
#> [17,] 0.006999923  0  0.0072727056 -2.176379e-03 0.008585088 0.0020537904
#> [18,] 0.005390355  0  0.0102135322 -3.936056e-03 0.011576688 0.0017360015
#> [19,] 0.003780787  0  0.0131543588 -5.695733e-03 0.014568289 0.0014182127
#> [20,] 0.002171219  0  0.0160951854 -7.455411e-03 0.017559890 0.0011004238
#>                B6          B7 C1           C2            C3           C4
#>  [1,] 0.001128197 0.001767839  0 -0.007252085 -0.0043575189 -0.002306030
#>  [2,] 0.002426642 0.002589120  0 -0.009144463 -0.0027177852 -0.002663698
#>  [3,] 0.003725086 0.003410401  0 -0.011036841 -0.0010780515 -0.003021367
#>  [4,] 0.005023531 0.004231682  0 -0.012929219  0.0005616822 -0.003379035
#>  [5,] 0.006321975 0.005052964  0 -0.014821596  0.0022014159 -0.003736703
#>  [6,] 0.002260979 0.002427298  0 -0.010856200 -0.0060545956 -0.004346853
#>  [7,] 0.003559424 0.003248579  0 -0.012748578 -0.0044148619 -0.004704521
#>  [8,] 0.004857868 0.004069860  0 -0.014640955 -0.0027751282 -0.005062189
#>  [9,] 0.006156313 0.004891141  0 -0.016533333 -0.0011353945 -0.005419858
#> [10,] 0.007454757 0.005712422  0 -0.018425711  0.0005043392 -0.005777526
#> [11,] 0.003393762 0.003086756  0 -0.014460314 -0.0077516723 -0.006387675
#> [12,] 0.004692206 0.003908037  0 -0.016352692 -0.0061119386 -0.006745344
#> [13,] 0.005990651 0.004729318  0 -0.018245070 -0.0044722049 -0.007103012
#> [14,] 0.007289095 0.005550599  0 -0.020137448 -0.0028324712 -0.007460681
#> [15,] 0.008587540 0.006371881  0 -0.022029826 -0.0011927374 -0.007818349
#> [16,] 0.004526544 0.003746215  0 -0.018064429 -0.0094487490 -0.008428498
#> [17,] 0.005824989 0.004567496  0 -0.019956807 -0.0078090153 -0.008786167
#> [18,] 0.007123433 0.005388777  0 -0.021849185 -0.0061692816 -0.009143835
#> [19,] 0.008421877 0.006210058  0 -0.023741563 -0.0045295478 -0.009501503
#> [20,] 0.009720322 0.007031339  0 -0.025633941 -0.0028898141 -0.009859172
#>                 C5            C6            C7         D1           D2
#>  [1,] -0.002645628  1.054438e-03 -0.0019663462 -0.4233166 -0.006901607
#>  [2,] -0.003531633  2.382864e-03 -0.0016460136 -0.5043095 -0.002042887
#>  [3,] -0.004417638  3.711289e-03 -0.0013256809 -0.5853024  0.002815833
#>  [4,] -0.005303643  5.039715e-03 -0.0010053483 -0.6662952  0.007674553
#>  [5,] -0.006189648  6.368141e-03 -0.0006850157 -0.7472881  0.012533273
#>  [6,] -0.004570067  6.882030e-04 -0.0027243097 -0.4209009  0.014495319
#>  [7,] -0.005456072  2.016629e-03 -0.0024039771 -0.5018938  0.019354039
#>  [8,] -0.006342077  3.345055e-03 -0.0020836445 -0.5828866  0.024212759
#>  [9,] -0.007228082  4.673480e-03 -0.0017633118 -0.6638795  0.029071479
#> [10,] -0.008114087  6.001906e-03 -0.0014429792 -0.7448724  0.033930199
#> [11,] -0.006494506  3.219682e-04 -0.0034822733 -0.4184852  0.035892245
#> [12,] -0.007380511  1.650394e-03 -0.0031619406 -0.4994780  0.040750965
#> [13,] -0.008266516  2.978820e-03 -0.0028416080 -0.5804709  0.045609684
#> [14,] -0.009152521  4.307246e-03 -0.0025212753 -0.6614638  0.050468404
#> [15,] -0.010038526  5.635671e-03 -0.0022009427 -0.7424567  0.055327124
#> [16,] -0.008418945 -4.426673e-05 -0.0042402368 -0.4160694  0.057289170
#> [17,] -0.009304950  1.284159e-03 -0.0039199041 -0.4970623  0.062147890
#> [18,] -0.010190955  2.612585e-03 -0.0035995715 -0.5780552  0.067006610
#> [19,] -0.011076960  3.941011e-03 -0.0032792388 -0.6590481  0.071865330
#> [20,] -0.011962965  5.269436e-03 -0.0029589062 -0.7400409  0.076724050
#>                D3            D4           D5            D6           D7
#>  [1,] -0.07505064  0.0005851296 -0.010442332  0.0021472621 -0.004984709
#>  [2,] -0.06621861 -0.0020327555 -0.008101139  0.0018962164 -0.004043032
#>  [3,] -0.05738658 -0.0046506407 -0.005759946  0.0016451707 -0.003101356
#>  [4,] -0.04855455 -0.0072685258 -0.003418753  0.0013941249 -0.002159679
#>  [5,] -0.03972251 -0.0098864110 -0.001077560  0.0011430792 -0.001218003
#>  [6,] -0.06965411 -0.0048804699 -0.012991874 -0.0005710456 -0.006379549
#>  [7,] -0.06082208 -0.0074983550 -0.010650681 -0.0008220913 -0.005437872
#>  [8,] -0.05199005 -0.0101162402 -0.008309488 -0.0010731371 -0.004496196
#>  [9,] -0.04315802 -0.0127341253 -0.005968295 -0.0013241828 -0.003554519
#> [10,] -0.03432598 -0.0153520105 -0.003627103 -0.0015752285 -0.002612843
#> [11,] -0.06425758 -0.0103460694 -0.015541416 -0.0032893534 -0.007774389
#> [12,] -0.05542555 -0.0129639546 -0.013200223 -0.0035403991 -0.006832713
#> [13,] -0.04659352 -0.0155818397 -0.010859030 -0.0037914448 -0.005891036
#> [14,] -0.03776149 -0.0181997249 -0.008517837 -0.0040424905 -0.004949359
#> [15,] -0.02892945 -0.0208176100 -0.006176645 -0.0042935362 -0.004007683
#> [16,] -0.05886105 -0.0158116689 -0.018090958 -0.0060076611 -0.009169229
#> [17,] -0.05002902 -0.0184295541 -0.015749765 -0.0062587068 -0.008227553
#> [18,] -0.04119699 -0.0210474392 -0.013408572 -0.0065097525 -0.007285876
#> [19,] -0.03236496 -0.0236653244 -0.011067380 -0.0067607982 -0.006344199
#> [20,] -0.02353292 -0.0262832095 -0.008726187 -0.0070118439 -0.005402523
#> 
#> 
#> $plotinfo
#> $plotinfo$p
#> [1] 300
#> 
#> $plotinfo$k
#> [1] 2
#> 
#> $plotinfo$links
#> NULL
#> 
#> $plotinfo$template
#> NULL
#> 
#> $plotinfo$axes
#> [1] 1 2
#> 
#> $plotinfo$nh
#> [1] 5
#> 
#> $plotinfo$nv
#> [1] 4
#> 
#> $plotinfo$mag
#> [1] 1
#> 
#> $plotinfo$xlim
#> NULL
#> 
#> $plotinfo$ylim
#> NULL
#> 
#> $plotinfo$asp
#> [1] NA
#> 
#> $plotinfo$rescale
#> [1] TRUE
#> 
#> $plotinfo$adj_frame
#> [1] 1 1
#> 
#> $plotinfo$asp.models
#> [1] 1
#> 
#> $plotinfo$rot.models
#> [1] 0
#> 
#> $plotinfo$size.models
#> [1] 1
#> 
#> $plotinfo$lwd.models
#> [1] 1
#> 
#> $plotinfo$bg.models
#> [1] "light gray"
#> 
#> $plotinfo$col.models
#> [1] "#708095"
#> 
#> $plotinfo$alpha.models
#> [1] 1
#> 
#> $plotinfo$cex.ldm
#> [1] 1
#> 
#> $plotinfo$col.ldm
#> [1] "black"
#> 
#> $plotinfo$models
#> [1] TRUE
#> 
#> $plotinfo$rotation_matrix
#> NULL
#> 
#> 
#> attr(,"class")
#> [1] "mspace"